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Abstract
The magnetic scattering from a Nd single crystal has been investigated in
the temperature range 19–30 K. The maximum at Q = (−δ, 1, 0) moves
continuously from δ = 0.145 at TN = 19.9 K to δ = 0.167 at 25 K. No intensity
is found at the (1±δ, 0, 0) positions. We have deduced the exchange interaction
constants, and tested these by successfully calculating the spin wave spectrum.
The interaction surface J (q) in q-space is volcano-like with a sharp, corrugated
rim. The structure above 19.1 K, also in the short range ordered phase, is
sinusoidal (striped) with no sign of transverse fluctuations. An interesting
possibility is that this is a quantum effect. Understanding the nature of this
phase may have relevance for understanding the stripe phase in high temperature
superconductors.

1. Introduction

The static and dynamic magnetic properties of light rare-earth metal Nd shed new light on the
nature of a magnetic sinusoidal phase, also called a stripe phase. It is relevant for understanding
the magnetic properties in the high temperature superconducting (HTc) oxides [1–3] (YBCO,
LSCO etc), which have been proposed to possess such a state, but the nature thereof is not
clear. The magnetism is similar for Nd and the oxides because the strong interactions leave
a degenerate, frustrated structure. Hence also the weaker forces are needed to understand
the resulting behaviour. That means both the large and very small energy scale must be
considered—and be right. The analogy brings a full understanding of the magnetism in Nd
to the forefront of present day science. Since the total angular moment is J = 9/2 the
neutron scattering has two orders of magnitude higher intensity than in the HTc materials
and therefore much more information is available. Unfortunately, the understanding of the
magnetic properties of Nd has been an unsolved puzzle for almost 50 years. Neutron diffraction
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investigations of the magnetic structure of Nd starting by Moon, Cable and Koehler [4] and
others [5–9] are numerous. In addition there has been a recent x-ray investigation [10]. These
revealed that Nd has the most complicated magnetic structure known for any pure element—
including a sinusoidal ordering. The reason for the found complexity has previously not been
understood, basically because the magnetic interactions were not determined. This is done
here, thereby resolving a large number of the puzzles found in Nd, which show bearings on the
puzzles of the HTc materials.

Nd has a double hexagonal close packed crystal structure with the stacking ABAC. In
this structure atoms on the A layer have neighbour distribution typical of the cubic structures,
whereas those on B and C layers have hexagonal neighbour environments. Nd orders [8]
antiferromagnetically at TN = 19.9 K, in a longitudinal sine wave, amplitude modulated phase
(LAMP) (similar to the stripe phase [2] proposed for HTc) on the hexagonal sites. However, this
is energetically unfavourable for Heisenberg-like exchange interactions, which would rather
favour a (flat) spiral phase [11]. In the accompanying paper [12] it is shown that Nd at 10 K
indeed has a flat spiral structure on the hexagonal sites, and a weak flat spiral polarization of the
cubic sites. For both Nd and the HTc oxides it is hard to find a strong anisotropy, which would
appear needed to stabilize a LAMP structure. For Nd the orbital contribution to the isotropic
Rudermann–Kittel interaction does according to Kaplan and Lyons [13] give rise to anisotropic
two-ion interactions with a strength of about 10% of the isotropic part. These interactions can
be expanded in multipoles, and the first and largest term has the symmetry of the classical
dipole interaction. The presence of such a term should give an effective sixfold anisotropy even
above TN. However, no experimental evidence for this has been reported. This may be because
of a cancellation effect with the classical dipole interaction, which is of similar magnitude. In
any case the available data are not sufficient for determining such additional interactions.

The modulation vector for the magnetic ordering is for even � : Q = (10�) − δ, where
δ = ±δ(010) or δ = ±δ(−1 − 10). It lies in the basal plane b-direction in real space, and is
incommensurate with the crystal structure; at odd � the magnetic ordering is Q = (00�) − δ,
including also δ = ±δ(100); throughout we use reciprocal lattice units (r.l.u.) and hexagonal
indexing. The magnitude δ(T ) decreases monotonically (almost linearly) from δ ∼ 0.145
to δ ∼ 0.11 from T = TN to 0.1 K—with signs of lock-in at δ = 1/8 and 1/7. The
temperature dependence is probably due to magnetically induced gaps in the Fermi surface [14],
and/or elastic effects, since it continues also above TN. The magnetic moments lie in the basal
plane. The moments on neighbouring hexagonal planes are ordered antiferromagnetically. At
T = T2 = 19.1 K a first-order transition to a double-q structure [15, 10, 12] takes place with
the wavevector Q = (00�odd) + δ1 + δ2, where δ1 and δ2 deviate by a temperature dependent,
small angle from the (100) and (010) directions and have an angle between them somewhat
less than 120◦. At T = T3 ∼ 9 K the cubic sites order with δcub ∼ 0.18 and a four-q
(or more) structure develops. Clearly, there is a strong coupling between the magnetic, the
structural and electronic properties. Traditionally, the exchange interactions in magnetic solids
have been determined by measuring the spin wave dispersions at temperatures lower than the
ordering temperatures by inelastic neutron scattering. However, the exchange interactions in
Nd could not be deduced by this method because no well-defined spin wave signals were found
by inelastic scattering [16].

It is a bit surprising that no diffuse magnetic neutron scattering [8] at temperatures above
TN has been undertaken on Nd. Critical magnetic neutron scattering samples the short range
ordered spin fluctuations and yields diffuse Lorentzian peaks in q-space. The positions and
half-widths directly determine the structure and inverse correlation length of the fluctuations.
Here we demonstrate that the diffuse magnetic scattering can be very useful and can give
supplementary, important information about the magnetic exchange interactions and the relative

2



J. Phys.: Condens. Matter 19 (2007) 286201 P-A Lindgård et al

stabilities of competing magnetic phases with small energy differences. We have measured
diffuse magnetic neutron scattering intensities from Nd above TN up to ∼1.5 TN and have
from these and other data deduced exchange interaction parameters and the corresponding q

dependent interaction surface. An interesting additional finding of the present study is that the
diffuse magnetic scattering peak is centred just above TN at the same propagation vector where
the Bragg peak appears below TN. However, the magnitude of the ordering vector increases
continuously above TN, with a marked increase in slope at T = TN. The kink at TN indicates a
magnetic influence, however, the further increase above TN requires a different mechanism.

2. Experimental methods

Neutron diffraction experiments were carried out on two diffractometers, E2 and E4, of
the Berlin Neutron Scattering Centre (BENSC) of the Hahn-Meitner-Institut, Berlin. The
diffractometer E4 is a two-axis diffractometer with a single detector which can be lifted out of
the scattering plane if necessary. We have however kept the detector in the scattering plane. No
energy analysis was possible on this instrument and the results reported are energy integrated
as far as that is possible for a three dimensional magnetic system. The diffractometer E2 in its
normal mode of operation is also a two-axis diffractometer equipped with a linear multidetector.
The diffractometer operates with the flat-cone geometry and provides the possibility of mapping
the reciprocal space layer by layer. There also exists the possibility to analyse energy with the
monochromator crystals but this set-up was not used during the present investigation. Here
we did integrated measurements as well. We mapped the diffuse intensity in the scattering
plane with the multidetector. In both diffractometers unpolarized monochromatic neutrons of
wavelength λ = 2.4 Å were obtained with PG(002) graphite monochromator. A 40′ collimator
and a PG graphite filter were used to collimate the monochromatic neutron beam and remove
higher order wavelength contamination. A 7 g Nd single crystal of linear dimensions of about
1 cm, grown by the Ames Laboratory, was used for the present investigation. The sample was
placed in a He cryostat with its crystallographic [001] or [110] axis parallel to the ω axis of the
diffractometer.

3. Results from the neutron scattering experiments

Figures 1(a)–(d) show 2D scans over 1/6 of the first Brillouin zone in the basal plane for
several temperatures between T = 19.6 and 25 K. These pictures show raw data without the
subtraction of the background arising from the nuclear scattering of the sample and also from
the materials of the sample environment. The powder lines come from Al sample holder and
Al tail of the cryostat. There exist additional streaks due to the monochromator and the linear
multidetector. We have not attempted to put the intensity in the absolute scale. They all show
essentially isotropically broadened satellites (insets show a four times magnification) and the
complete absence of peaks at (1 ± δ, 0, 0). The scan (a) at T = 0.98TN is in the ordered
phase, while (b)–(d) are in the short range ordered phase. Figure 1(e) shows the h-scans we
performed at several temperatures below TN around Q = (−0.145 ± h, 1, 0), which were
fitted with a Gaussian. The full width at half-maximum (FWHM) of these reflections were
FWHM = 0.0056 ± 0.0001, which represents the experimental resolution. The reflections
developed broad Lorentzian ‘wings’ as TN was approached. Figure 1(f) shows similar scans
at T � TN from Nd in the temperature range 20–25 K with much wider scan range than that
used to determine Bragg scans shown in figure 1(e). The data in figure 1(f) have been fitted
with a Lorentzian line shape to yield the position δ and FWHM, which have been plotted in
figure 2. The errors of the least squares fits become very large at temperatures above 22 K and
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Neutron counts / 12.5 sec Neutron counts / 4 min

Figure 1. (a)–(d) show 2D scans of the (h, k, 0) plane for ((a), (b), (c), (d)) at T =
(19.6, 20.7, 21.5, 24.1) K. The interesting satellite regions are magnified four times in the insets.
Notice the total absence of paramagnetic scattering at the (±δ−1, 0, 0) satellites at all temperatures.
It is simply due to the extinction by the (1 − (κ · m)2) factor (κ and m are unit vectors in the
scattering- and moment directions). (e) The h-scans of satellite magnetic Bragg reflection of Nd at
q = (−δ + h, 1, 0) at several temperatures below the Néel temperature TN. The continuous curves
are the results of fit of the data with Gaussian curves. (f) h-scans of the magnetic diffuse scattering
of Nd at q = (−δ +h, 1, 0) at several temperatures above the Néel temperature TN. The continuous
curves are the results of fit of the data with Lorentzian curves.

measurements become very difficult and time consuming above about 30 K. Figure 2(a) shows
the temperature dependence of the position of diffuse peaks obtained by fitting the data with
Lorentzian line shapes. The position of the diffuse scattering maximum at Q = (−δ, 1, 0)

moves continuously from δ = 0.145 at TN to δ = 0.167 ∼ 1/6 at T = 25 K. The highest
temperature at which we measured the diffuse magnetic intensity from Nd was T = 30 K.
However, fit of the data with the Lorentzian function does not yield δ and FWHM with any
reasonable accuracy.

Figure 2(b) shows the width, FWHM, which is related to the inverse correlation length,
κ , by 2κ = FWHM. The instrumental resolution is small, relative to the diffuse scattering
above TN. For example at T = 21 K the FWHM is 0.12 ± 0.01, which is about 21 times larger
than the instrumental resolution. So, to a very good approximation we can take FWHM given
in figure 2(b) as twice the inverse correlation length. The inverse correlation length of Nd at
T = 21 K is κ = 0.06, corresponding to a direct correlation length of ∼17 lattice units. At
T = 25.2 K the inverse correlation length κ = 0.14 ± 0.07, which gives the direct correlation
length of ∼7 lattice units. This is about the length of just one magnetic period.
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Figure 2. (a) Temperature dependence of the peak position Q = (−δ, 1, 0) of the magnetic
diffuse scattering from Nd obtained by fitting the intensity distribution of figure 1(f) by a Lorentzian
function. (b) The full width at the half-maximum (FWHM) of the diffuse magnetic intensity from
Nd obtained by fitting the intensity distribution of figure 1(f) by a Lorentzian function.

4. Determination of the exchange interaction parameters

The above data—combined with all information available on the susceptibilities of Nd—can
be used to derive information about the exchange interactions in Nd using the mean field (MF)
theory. This is possible mainly because of the incommensurate ordering, which on the other
hand complicates the spin wave data! Because the information available is very limited, let us
assume a minimal Hamiltonian and test how far that brings the analysis:

H = −
∑

p,〈i j〉
Jp

i jJ
p
i · J

p
j + Dp

∑

i

J pz2
i + Hh

hex + Hint, (1)

where p indicates hexagonal (h) and cubic (c) sites, Dh,c are the axial anisotropy constants
and J p

i j = J p
n are the direct interaction constants in the basal plane between a spin on the

hexagonal (or cubic) lattice and its neighbours of group n = 1, 2, 3, 4, 5 according to increasing
distance. In addition it is possible to determine only one out-of-plane interaction J ′ between
neighbouring hexagonal planes. Therefore, the resulting interactions Jn are effective in-plane
interactions, which may include further inter-plane interactions.

The Fourier-transformed interaction function, for q in r.l.u., is for the h sites (x is along
the a- and y along the b-direction, i.e. the reciprocal (100) direction):

J h(q) = J (q) + J ′(q),

where

J (q) = 2[J1(c
x
2 + 2cx

1 cy
1 ) + J2(c

y
2 + 2cx

3 cy
1 ) + J3(c

x
4 + 2cx

2 cy
2 )

+ J5(c
x
6 + 2cx

3 cy
3 ) + 2J4(c

x
5 cy

1 + cx
4 cy

2 + cx
1 cy

3 )],
J ′(q) = 2J ′(ey∗

2 + 2cx
1 ey

1 ) cos(πqz),

where

cx
n = cos(qx f n/2), cy

n = cos(q y f sn/2), ey
n = (iq y f sn/6),

f = 4π/s, s = √
3.

(2)

Because it is not real when including the inter-plane interaction, J ′, one must use the real
value Re {} in equation (3). This fact also complicates the spin wave relations considerably.
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Table 1. The deduced exchange constants J h
n between the hexagonal sites n with increasing

distance and the inter-planar coupling J ′. Using the temperature dependent ξ = δ(T ) − 0.14, one
may find the interactions corresponding to a temperature where δ = δ(T ) 	= 0.14. Similarly, the
deduced coupling between the cubic sites, J c

n , is given. For completeness also the axial anisotropy
constants are included.

J h
1 = 0.170 ± 0.02 K +ξ/2 K J c

1 = 0.200 ± 0.02 K

J h
2 = 0.082 ± 0.04 K +ξ/2 K J c

2 = 0.019 ± 0.06 K

J h
3 = 0.062 ± 0.03 K +ξ/5 K J c

3 = 0.023 ± 0.05 K

J h
4 = −0.110 ± 0.02 K −2ξ K J c

4 = −0.071 ± 0.02 K

J h
5 = 0.04 K J c

5 = 0.04 K

J ′ = −0.080 ± 0.01 K +ξ K
Dh = 0.77 K Dc = 0.12 K

A similar expression can be written for the interactions on the cubic sites, J c(q), which however
is real.

We shall later discuss the influence of the small hexagonal and other anisotropy terms Hh
hex

on the h sites and the weak interaction Hint between the h and c sites, while at first neglecting
them. The diffuse magnetic scattering measures the wavevector and temperature dependent
susceptibility χ(q, T ) [17, 18]. This can be written in the MF approximation [18]—and the
inverse expanded to second order in 
q around the maximum at Q as:

χp(q, T ) = Re{1/[C(T − 
�p/3) − Jp(q)]} ∼ 1/(κ2 + 
q2), (3)

where C = 3kB/S(S+1), kB is Boltzmann’s constant and 
�p = �
p
⊥−�

p
‖ are the differences

between the Curie–Weiss temperatures for a field in- and out-of-plane for p = h, c. They
are [19] 
�h = 22.3 K and 
�c = 3.5 K. From this we find the anisotropy constants
Dh = 0.77 K, and Dc = 0.12 K. The Fourier-transformed interaction function Jp(q) is
complex for the h sites because of the lack of inversion symmetry, but real for the c sites.

The value at q = 0 is determined by the Curie–Weiss temperatures as Jp(0) =
C(�

p
⊥ − 
�p/3) = 0.29 K and 0.85 K for h and c sites, respectively. For example

Jh(0) = 6(J h
1 ,+J h

2 + J h
3 + 2J h

4 + J h
5 + J ′) = 0.29 K. Hence, the sum over all interactions

is slightly larger than zero for both lattices. Similarly, the Néel temperatures, T p
N , determine

the maximum of Jp(Q), yielding 1.51 K and 0.96 K for h and c sites, respectively. At the peak
positions, Q, the first derivative of Jp(q) is 0 along both the b- and a-direction. This produces
several Qdependent linear combinations of the parameters to be equal to zero. Finally, the
finite values of second derivatives at the peaks are determined by κ from the diffuse scattering,
equation (3). From the MF assumption that κ can be written as κ = K (T − T h

N )1/2 we find the
amplitude, K from figure 2(b). All conditions are written for the diffuse scattering around
(00�odd) and (10�even) allowing also J ′ to be determined. Together with weak conditions
that Jp(q) must be close to zero in the middle of the zone (to avoid false maxima) we have
all together 17 and 11 linear combinations for the h and c sites, respectively, from which
we determine 5J h

n constants plus J ′ by using a least squares fit. For the cubic sites we can
determine 5J c

n interaction parameters—with somewhat less certainty, since less information is
available.

Solving the above for the h sites around δ = 0.14 + ξ , where ξ is a small number, yields
the exchange constants J h

n between the hexagonal sites n of increasing distance, and the inter-
planar J ′ constant, given in table 1. By finding the experimentally observed ordering vector,
yielding δ(T ) = 0.14 + ξ at various temperatures, one can then deduce an estimate also for
the temperature dependence of the interaction parameters. The resulting Jh(q) function in the
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Figure 3. (a) The deduced volcano-like, Jh(q) in K, for the hexagonal sites at (00�odd); similar,
but 0.7 K lower volcanoes are found at the (10�odd) positions; whereas identical ones are found
at (10�even) and the lower ones at (00�even). A similar volcano-like function, Jc(q), is found for
the cubic systems with a slightly larger rim radius. (b) The calculated 2D intensity map of χh(Q)

at T = 1.01TN around Q = (1, 0, 0). Notice all six satellites are potentially present. (c) The
calculated temperature dependences of 1/χh(Q, T ) at Q = (δ, 0, 1) and Q = (δ, 1, 0). Notice the
different slopes, which are due to complex interactions between the planes, see equation (2).

(qx , q y, 0) plane is shown in figure 3(a). It shows a volcano-like function, with a rim with
radius δ and relatively small peaks at all the (100)* directions. The peaks are emphasized by a
finite J5. Introduction of this is needed to provide an almost isotropic intensity pattern, χ(q),
around the satellites, See figure 3(b). Hence, we fix J5 = 0.04 K in the fit. If J5 is reduced
to −0.02 K the rim becomes completely flat. Figure 3(c) shows the temperature dependence
of inverse susceptibility 1/χh(Q, T ) at Q = (δ, 0, 1) and Q = (1, δ, 0). Notice the different
slopes near TN, which are due to complex interactions between the planes. This effect can be
used to judge the range of also the inter-planar interactions. A fit for the cubic sites at δc = 0.18
yields the effective planar interactions given in table 1. The resulting Jc(q) is again volcano-
like with a larger rim radius of 0.18. It is interesting that the cubic nearest neighbour interaction
is larger than the hexagonal one. The lower ordering temperature of the cubic sites is due to
the smaller planar anisotropy (Dc < Dh). Of course the deduced interactions represent only
a first approximation to the interactions in Nd. One can therefore not expect these to describe
in detail the intricate magnetic phase transitions to multi-q structures observed to occur at
lower temperatures. Presumably an important driving force for these is the magnetoelastic
interaction and the requirement that the incommensurate magnetic structures must fit in to the
dhcp lattice. This will typically involve epitaxial rotation [9, 12], and hence make the ordering
vectors deviate from high symmetry directions. It is beyond the present high temperature study
to go into such details.

The peak in the Jh,c(q) functions may be more pronounced than here deduced, figure 3.
It is due to properties of the Fermi surface, and therefore not easily describable with a few
exchange interaction constants. In the neighbouring element, Pr, the interaction function Jh(q)

has been measured from the crystal field excitations by neutron scattering [20]. It shows a very
pronounced peak. That dispersion relation has been fitted with 22 interaction constants, but still
without catching all the details of the minimum of the dispersion relation, which is related to
the peak in Jh(q). A similar analysis is of course not possible for Nd with the present available
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Wavevector (0,0,1) Wavevector (h,0,3)

Figure 4. The calculated spin wave dispersion relations for simple spiral structures, based on
the deduced exchange interaction parameters and measured planar anisotropies. The hexagonal
excitations (bluish and greenish) emerge from the chosen δh = 0.14 (actually δ ∼ 0.11 is found
at T = 1.2 K, but the general behaviour—reflecting the volcano-like Jh(q), does not change much
with the value of δ). They are split up due to the two sublattices and form a band around 3.5 meV.
The calculated relative intensities (without the detailed balance factor) are given by the size of the
black ovals. A set of exactly mirrored curves emerging from around (103) are not shown for clarity,
but must be added. The thin (yellow) curves emerging from the Bragg peaks carry the intensity
factor (1 − (κ · m)2) factor and are therefore very weak close to the �-direction. The cubic modes
(reddish) emerge from δc = 0.18 and form a band around 1 meV. In most part of the zone there are
many nearby branches. At half the zone they cross and leave two narrow signals. Both the scale and
the nature of the calculated spectrum are in agreement with experiments [16], shown in the inset.

information. Diffuse scattering has previous been used to determine exchange interactions in
simpler systems [21–24], also going beyond the simple mean field theory [23, 24]. Here the
analysis is complicated both by the temperature dependent ordering vector, the incommensurate
structure and the long ranged interactions. Therefore, we have taken the simplest approach as
the first step towards an understanding of the interactions in Nd.

5. Calculated spin wave spectrum at T = 1.2 K

It is clear that exchange interaction functions determined from the above information are
in general less accurate and unique than those determined from spin wave (or crystal field
excitations) measurements in favourable cases. Firstly, because the theory of that is more
accurate and secondly because many more q-points may be used. However, with the deduced
Jh,c(q) functions we can on the other hand, as a test, calculate the spin wave dispersion
relations. We have recently deduced [12] that the structure at T = 10 K is a ‘flat spiral’ with an
aspect ratio ∼1:3 (and a weak polarization of the cubic sites). The transverse component grows
with decreasing temperature. At T = 1.2 K we shall therefore assume the magnetic structure
to be essentially spiral on both h and c sites, neglecting interactions Hint. For this structure,
the dispersion relation is well known [25]. It can been shown numerically that the simplified
spiral case discussed there, actually is valid for all, also complex directions of q when using (in
their notation) Eq±2 = |Aq ± Cq|2 − |Xq|2, where Xq = Bq ± Dq . Hence both energies and
intensities can be calculated.

The calculated dispersion relations and intensities are given in figure 4 using the above
determined parameters and assuming δh = 0.14 and δc = 0.18. In agreement with experiments
we find two bands of excitations: around 3.5 and 1 meV. Due to the incommensurate order a lot
of excitations are found in certain regions of q-space (hence difficult to resolve experimentally
and in agreement with the observed broad ‘bands’), but they cross, and therefore narrow peaks
occur at half the zone, precisely as observed by experiments [16] at T = 1.2 K, see inset in
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figure 4. If the interaction, Hint, between the h and c sites is included, the branches interact and
gain intensity also in zones, where they are not dominant.

Considering the simplifying assumptions the agreement is surprisingly good. This gives
confidence to the parameters and the Jh(q), Jc(q) functions here obtained by alternative
methods. On this basis we can understand the multiple splitting of the peaks in Nd with
decreasing temperature below T = 19.1 K, since it costs very little energy to move along the
rim of the volcanos to accommodate the incommensurate magnetic structure into the lattice.
Qualitatively similar J (q) volcano-like functions are found in the HTs oxides [3] and this
establishes a profound analogy between those and Nd, although the former are yet still more
complicated.

6. Absence of transverse paramagnetic scattering in Nd

A very interesting behaviour of Nd is actually found for T > 19.1 K, where the present
experiments are focused. The present neutron scattering results show total absence of diffuse
scattering of intensity along the (100) direction, see figures 1(a)–(d). This is the proof of the
sinusoidal LAMP order in Nd. In MF theory this is the natural end of a flat spiral cite12
near TN: spins in the transverse, small moment regions experience a relatively small MF and
go disordered before the longitudinal regions. Hence, a small two-ion anisotropy, sixfold
anisotropy or magnetoelastic coupling, Hh

hex (yielding a distorted spiral) can, together with
an incommensurate ordering vector, indeed be the driving force, because the effect thereof is
strongly enhanced by temperature close to, but below TN. However, even at T = 1.5TN no
transverse scattering is observed, which would be expected in case of ‘ordinary’ paramagnetic
scattering, where the spins fluctuate in all directions. Hence, we are lead to conclude that
the transverse Nd moments seem to ‘disappear’ in the low moment regions! This should
be investigated further—and be quantified. A sixfold or two-ion anisotropy, for example of
dipolar symmetry, may have the effect of reducing the transverse fluctuations also in a short
range ordered phase. But they cannot totally suppress them. Further, in this case a significant
sixfold anisotropy of the susceptibility should be observable above TN, which has not been
measured. An interesting possibility is quantum effects. That is dominant in the neighbouring
element, Pr with J = 4. This forms a non-magnetic singlet |0〉 ground state on each site, and
no spontaneous magnetic ordering exist in the pure Pr. On the other hand this allows crystal
field excitations to be fully measured. Nd, having a non-integer J = 9/2, instead forms a
|±1/2〉 Kramers doublet to minimize the moment in the large axial crystal field. However
the moment is not vanishing, therefore a description in terms of a planar anisotropy constant is
valid. The next energy level |±3/2〉 is expected to be only around 0.5 meV above [16]. Inelastic
neutron scattering measurements [16] detect considerable amount of low energy scattering, but
have failed to detect a clear crystal field transition between the mentioned levels above TN.
Somewhat similar to Pr, it is possible that Nd may produce ‘vanishing’ moments at certain pair
of sites by forming singlet pairs, and thereby gain exchange energy relative to the paramagnetic
state. MF theory cannot distinguish between paramagnetic and singlet disorder. Such singlets
will not show any elastic neutron signal. However, there should be inelastic excitations at
around 2J ′ J 2 ∼ 0.3 meV—with a characteristic form factor. This brings the contact to the
HTc materials where a similar ‘stripe’ or LAMP sinusoidal phase has been proposed [2]. In
that case the spins are simply S = 1/2 and quantum effects, such as singlet pair formations,
are naturally to be expected. We emphasize: in Nd the LAMP sinusoidal order is fluctuation
dominated, and found only within 4% of TN, or as short range order (of range of 17–7 sites)
above. Hence, one finds only small domains of this order and not a complete stripe phase. It
might be worthwhile to further study the properties of the sinusoidal phase in Nd, also with
inelastic scattering, for the range 19 K < T < 30 K.
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7. Conclusions

The present study has resulted in valuable, new information about the exchange interactions
in Nd, which is new and interesting in its own right. The analysis allows determination of the
presumably dominant isotropic interactions, but cannot resolve possible weaker interactions
like two-ion anisotropy and magnetoelastic forces. The found volcano-like interaction surface
rationalizes the particular and exceptional magnetic behaviour of Nd, where a multitude
of satellites are found at low temperatures. This is possible because the ordering vector
may deviate from symmetry directions at low cost of magnetic energy (epitaxial rotation) to
minimize elastic energy. However, much wider, understanding the Nd structure gives an insight
into other incommensurate magnetic structures, for example those proposed to be important for
understanding the HTc materials, which have a similar interaction surface as the one found for
Nd. Very surprisingly, there is absolutely no sign of transverse scattering even at T = 1.5TN. If
the low moment regions were occupied by paramagnetic ions one would expect a measurable
intensity at T > TN. This might indicate that the Nd ions prefer to form non-magnetic singlet
pairs, which cannot be observed by elastic neutron scattering. This is close to the singlet state
proposed by Anderson [26] for the HTc materials. Further studies of Nd could clarify the nature
of such a state with the advantage of much larger intensities.
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